3.10.22 \(\int \frac {(a+b x)^n (c+d x)}{x^2} \, dx\) [922]

3.10.22.1 Optimal result
3.10.22.2 Mathematica [A] (verified)
3.10.22.3 Rubi [A] (verified)
3.10.22.4 Maple [F]
3.10.22.5 Fricas [F]
3.10.22.6 Sympy [B] (verification not implemented)
3.10.22.7 Maxima [F]
3.10.22.8 Giac [F]
3.10.22.9 Mupad [F(-1)]

3.10.22.1 Optimal result

Integrand size = 16, antiderivative size = 62 \[ \int \frac {(a+b x)^n (c+d x)}{x^2} \, dx=-\frac {c (a+b x)^{1+n}}{a x}-\frac {(a d+b c n) (a+b x)^{1+n} \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,1+\frac {b x}{a}\right )}{a^2 (1+n)} \]

output
-c*(b*x+a)^(1+n)/a/x-(b*c*n+a*d)*(b*x+a)^(1+n)*hypergeom([1, 1+n],[2+n],1+ 
b*x/a)/a^2/(1+n)
 
3.10.22.2 Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 55, normalized size of antiderivative = 0.89 \[ \int \frac {(a+b x)^n (c+d x)}{x^2} \, dx=-\frac {(a+b x)^{1+n} \left (a c (1+n)+(a d+b c n) x \operatorname {Hypergeometric2F1}\left (1,1+n,2+n,1+\frac {b x}{a}\right )\right )}{a^2 (1+n) x} \]

input
Integrate[((a + b*x)^n*(c + d*x))/x^2,x]
 
output
-(((a + b*x)^(1 + n)*(a*c*(1 + n) + (a*d + b*c*n)*x*Hypergeometric2F1[1, 1 
 + n, 2 + n, 1 + (b*x)/a]))/(a^2*(1 + n)*x))
 
3.10.22.3 Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 62, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {87, 75}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c+d x) (a+b x)^n}{x^2} \, dx\)

\(\Big \downarrow \) 87

\(\displaystyle \frac {(a d+b c n) \int \frac {(a+b x)^n}{x}dx}{a}-\frac {c (a+b x)^{n+1}}{a x}\)

\(\Big \downarrow \) 75

\(\displaystyle -\frac {(a+b x)^{n+1} (a d+b c n) \operatorname {Hypergeometric2F1}\left (1,n+1,n+2,\frac {b x}{a}+1\right )}{a^2 (n+1)}-\frac {c (a+b x)^{n+1}}{a x}\)

input
Int[((a + b*x)^n*(c + d*x))/x^2,x]
 
output
-((c*(a + b*x)^(1 + n))/(a*x)) - ((a*d + b*c*n)*(a + b*x)^(1 + n)*Hypergeo 
metric2F1[1, 1 + n, 2 + n, 1 + (b*x)/a])/(a^2*(1 + n))
 

3.10.22.3.1 Defintions of rubi rules used

rule 75
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x 
)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))*Hypergeometric2F1[-m, n + 1, n + 2, 1 + 
 d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (IntegerQ[m] 
 || GtQ[-d/(b*c), 0])
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 
3.10.22.4 Maple [F]

\[\int \frac {\left (b x +a \right )^{n} \left (d x +c \right )}{x^{2}}d x\]

input
int((b*x+a)^n*(d*x+c)/x^2,x)
 
output
int((b*x+a)^n*(d*x+c)/x^2,x)
 
3.10.22.5 Fricas [F]

\[ \int \frac {(a+b x)^n (c+d x)}{x^2} \, dx=\int { \frac {{\left (d x + c\right )} {\left (b x + a\right )}^{n}}{x^{2}} \,d x } \]

input
integrate((b*x+a)^n*(d*x+c)/x^2,x, algorithm="fricas")
 
output
integral((d*x + c)*(b*x + a)^n/x^2, x)
 
3.10.22.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 223 vs. \(2 (49) = 98\).

Time = 2.87 (sec) , antiderivative size = 223, normalized size of antiderivative = 3.60 \[ \int \frac {(a+b x)^n (c+d x)}{x^2} \, dx=- \frac {b^{n + 1} d n \left (\frac {a}{b} + x\right )^{n + 1} \Phi \left (1 + \frac {b x}{a}, 1, n + 1\right ) \Gamma \left (n + 1\right )}{a \Gamma \left (n + 2\right )} - \frac {b^{n + 1} d \left (\frac {a}{b} + x\right )^{n + 1} \Phi \left (1 + \frac {b x}{a}, 1, n + 1\right ) \Gamma \left (n + 1\right )}{a \Gamma \left (n + 2\right )} - \frac {b^{n + 2} c n \left (\frac {a}{b} + x\right )^{n + 1} \Gamma \left (n + 1\right )}{a b x \Gamma \left (n + 2\right )} - \frac {b^{n + 2} c \left (\frac {a}{b} + x\right )^{n + 1} \Gamma \left (n + 1\right )}{a b x \Gamma \left (n + 2\right )} - \frac {b^{n + 2} c n^{2} \left (\frac {a}{b} + x\right )^{n + 1} \Phi \left (1 + \frac {b x}{a}, 1, n + 1\right ) \Gamma \left (n + 1\right )}{a^{2} \Gamma \left (n + 2\right )} - \frac {b^{n + 2} c n \left (\frac {a}{b} + x\right )^{n + 1} \Phi \left (1 + \frac {b x}{a}, 1, n + 1\right ) \Gamma \left (n + 1\right )}{a^{2} \Gamma \left (n + 2\right )} \]

input
integrate((b*x+a)**n*(d*x+c)/x**2,x)
 
output
-b**(n + 1)*d*n*(a/b + x)**(n + 1)*lerchphi(1 + b*x/a, 1, n + 1)*gamma(n + 
 1)/(a*gamma(n + 2)) - b**(n + 1)*d*(a/b + x)**(n + 1)*lerchphi(1 + b*x/a, 
 1, n + 1)*gamma(n + 1)/(a*gamma(n + 2)) - b**(n + 2)*c*n*(a/b + x)**(n + 
1)*gamma(n + 1)/(a*b*x*gamma(n + 2)) - b**(n + 2)*c*(a/b + x)**(n + 1)*gam 
ma(n + 1)/(a*b*x*gamma(n + 2)) - b**(n + 2)*c*n**2*(a/b + x)**(n + 1)*lerc 
hphi(1 + b*x/a, 1, n + 1)*gamma(n + 1)/(a**2*gamma(n + 2)) - b**(n + 2)*c* 
n*(a/b + x)**(n + 1)*lerchphi(1 + b*x/a, 1, n + 1)*gamma(n + 1)/(a**2*gamm 
a(n + 2))
 
3.10.22.7 Maxima [F]

\[ \int \frac {(a+b x)^n (c+d x)}{x^2} \, dx=\int { \frac {{\left (d x + c\right )} {\left (b x + a\right )}^{n}}{x^{2}} \,d x } \]

input
integrate((b*x+a)^n*(d*x+c)/x^2,x, algorithm="maxima")
 
output
integrate((d*x + c)*(b*x + a)^n/x^2, x)
 
3.10.22.8 Giac [F]

\[ \int \frac {(a+b x)^n (c+d x)}{x^2} \, dx=\int { \frac {{\left (d x + c\right )} {\left (b x + a\right )}^{n}}{x^{2}} \,d x } \]

input
integrate((b*x+a)^n*(d*x+c)/x^2,x, algorithm="giac")
 
output
integrate((d*x + c)*(b*x + a)^n/x^2, x)
 
3.10.22.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b x)^n (c+d x)}{x^2} \, dx=\int \frac {{\left (a+b\,x\right )}^n\,\left (c+d\,x\right )}{x^2} \,d x \]

input
int(((a + b*x)^n*(c + d*x))/x^2,x)
 
output
int(((a + b*x)^n*(c + d*x))/x^2, x)